
I . IllC.I.
• .....

_ j_ _-P, _'__,,_CHNICAL INFORMATION RELEASE

__ment and t_hnlcal oervlc_ company

FROM _.
Susan N. Brand Cintron, Ph.D./SD4

DATE [CONTRACTNO: I T.O.OR A.D. REF: I MIS OR OTHERNASA REF-'-'-'-_
I

]5/7/85 / NASg-glS_.Z____._I
SUBJECT Space-Flight Simulations of Calcium Metabolism Using a

Mathematical Model of Calcium Regulation

Z4_ql
_U

__u__ _ This report presents the results of a series of simulation studies of calcium
_ mem_U metabolic changes which have been recorded duri,lg human exposure to bed rest

::_ mo and space flight. Space-flight and bed-rest data demonstrate losses of total
n====,4 body calcium during exposure to hypogravic environments. These losses are
m4:u_ _ evidenced by higher than normal rates of urine calcium excretion and by

n=_=: negative calcium balances In addition, intestinal absorption rates and bone&-0 _
-a--_ mineral content are assumed to decrease.

-_1_am The bed-restand space-flightsimulationswere executedon a mathematicalmodel
_om_ of the calciummetabolicsystem. The purpose of the simulationsis to
_auw::'_",_. theoreticallytest hypothesesand predictsystem responseswhich are occurring
-hi==: u during given experimental stresses, in this case, hypogravity. This occurs
_wu}c_u throughthe comparisonof simulationand experimentaldata and through the
,_w _ analysisof model structureand system responses. The model reliablysimulates

e the responses of selected bed-rest and space-flight parameters. When experT-,..,,_1 n_t U

_,a=.,_ mental data are available, the simulated _keletal responses and regulatory
=o_u _ factors involvedin the responsesagree wath space-flightdata collectedon
"I='_ • rodents. In addition areas within the model that need improvementareI_, _ •
•- x:_a identified.
o = ._ NF.5-3C6_1
al l-,i ,ll /i ,,

__ Unclas Susan N. Brand
i, (_ t G31_2 2 1592

"o m rm Attachment
/db

• |

Unit A:Pn'_;eniFTA_ut#D NASAManager . . Concurrence , ' I

DISTRIBUTION NASAIJSC: MATSCOIHO: _:
NASA/HqS: MATSCO/HqS: BE3/B.J.Jefferson R.F. Meyer T.D. Gregory(2)
R. J. White L. Griffiths SA/W. H. Shuma_e Mission Sci.Group Contracts File

SB/J. Vanderploeg TIR Files
SD2/J. Logan
SD3/M. Bungo

/J. Charles
/P. Johnson
/V. Schneider

i - i i v |_n n II

i985022309-002



/;

Space-Flight Simulations of Calcium Metabolism Using A
Mathematical Model of Calcium Regulation

Table of Contents

Section Page

1.0 INTRODUCTION ....................... 1

2.0 PROCEDURES ....................... 3

2.1 EXPERIMENTAL DATA .................. 3

2.2 THE CALCIUM MODEt..................... 3

2.3 MODEL SIMULATIONS .................. 6

2.4 SIMULATION INITIALIZATLONS .............. 7

3.0 RESULTS OF THE VALIDATION TESTS .............. 12

3.1 VALIDATION OF THE BEO-REST SIMULATIONS ........ 12

3.1.1 Urine Excretion ............... 12 c

3.1.2 Intestinal Absorption and Vitamin D ...... 14 :_

3.1.3 Plasma Parathyroid Hormone .......... 15

3.2 VALIDATION OF THE SPACE-FLIGHT SIMULATIONS ...... 17

4.0 HYPOTHESIS TESTING ................... 21 _

4.1 GRAVITY VECTORS DURING BED REST AND SPACE FLIGHT . . . 21

4.2 REGULATORY PROPERTIES OF BONE: SIMULATION DATA.... 24

5 O CONCLUSION 30 "_• oeeoeooeeooeeeoemeeeo.o. _

6.U REFERENCES ........................ 33
_,

1985022309-003



,"i

LIST OF TABLES

Table Title Pa__

I Results of Selected Variable Responses During Bed-Rest !6
Simulations With Changes in Plasma PTH Concentration
(percent change from baseline)

2 Comparison of Bed-Rest and Space-Flight Simulation and 19
Experimental Results (percent change from baseline)

3 Results of Selected Skeletal Parameters During Bed-Rest 27
Simulations With Changes in Plasma PTH Concentrations

(Percent Change from Baseline) .;_

I

2

ii

1985022309-004



LIST OF FIGURES

Figure Title

i Selected Parameters from the Bed Rest and Space-
Flight Data ........................ 4

2 Major Compartments and Fluxes Contained in the
Jaros, et al. Calcium Model ................. 5

3 Hypothesis Development of Gross Calcium Metabolic
Responses to Hypogravic Conditions Using a Two-
Compartment Model ..................... 9

4 Selected Variables from the Bed-Rest Simulation ...... 13

5 Validation of the Space-Flight Simulation ......... 18

6 Comparison of Gravitational Stress upon the Human
Body under Three Different Conditions: Ambulatory _
and Supine Positions in One-g and the Resting
Position in Zero-g ..................... 22

7 Selected Variables from the Bed-rest Simulation

(Plasma PTH Decrease) ................... 25 u

8 Physiological Responses of the Calcium Metabolic
System to the Weightless Environment ............ 30

iii

1985022309-005



1.0 INTRODUCTION

The Skylab program, in 1973, provided the Life Sciences Division at the

Johnson Space Center with the first opportunity to investigate human

physiological adaptive responses to the weightless environment. During the

Mercury, Gemini, and Apollo programs, only a limited number of physiological

measurements,during restricted time p_riods (pre- and postflight), could be

collected on the astronaut crews. However, the data collected during these

early flights did seggest that physiological changes were occuring inflight

(1,2). The Skylab program provided the opportunity to investigate pre-, in-,

and postflight alterations in human neurophysiology, biochemistry, hematology,

cytology, musculoskeleta] function, cardiovascular function, and metabolic

function (3).

This paper will focus on data analyses addressing the calcium metabolic and

skeletal changes recorded in the Skylab crews during space flight. Because

the opportunities for conducting life sciences experiments in space are few .

and the subject population sizes are small, these space-flight data analyses
_

will be supplemented with data collected during a series of bed rest studies _ci!

conducted at the United States Public Health Hospital in San Francisco (14),
and with data generated through a theoretical analytical tool, a computerized

mathematical model of calcium metabolism.

Bed-rest studies provide a ground-based technique for simulating many of the I,

physiological changes that are observed during space flight. A brief review 9i

of these physiological changes is as follows. A consistent loss of whole-body

calcium has been observed in humans during space flight (5) and bed rest (4)

studies. This loss is demonstrated by rapid (within one to two weeks)

increases in urine calcium excretiortrates and decreases in whole-body calcium

balances. The suspected source of ca)cium deprivation is the skeletal system

since 98 percent of total body calcium is contained in the hard tissues of the

human body (6). Bed rest studies provide the opportunity to investigate _

further, in a hospital laboratory setting, and with a higher statistical _i

subject population, these calcium metabolic changes. _'_
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The mathematical model of calcium metabolism provides a theoretical tool for

testing hypotheses and predicting system responses to a given experimental ._

stress, in this case, exposure to zero-gravity. Specifically, the purpose of

the model is to define regulatory and interactive calcium metabolic events

that may be occuring within the normal, healthy physiological system during

periods of an applied experimental stress. In this report, a series of

simulation studies of bed rest and space flight are recorded. The objectives

of these simulation studies are to validate the calcium model's output witn

experimental data, to test with the model some of the current hypotheses

related to bed rest, and to predict with the model the nature of gross

skeletal changes during human exposure to hypogravic environments.

1
T
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2.0 PROCEDURES _
,L,

2.1 EXPERIMENTAL DATA •

Space-flight data collected during the Skylab missions have been obtained from

the published reports of Rambaut and Johnston (5), Leach and Rambaut (7), and

Leach, Rambaut, and DiFerrante (8). Bed rest data were obtained from studies

conducted over a ten-year period at the U.S. Public Health Hospital in San

Francisco. These data were provided by Dr. V. Schneider (4). A summary of

the space-flight and bed-rest results are presented in Figure I. For most of

the metabolic variables, the sets of bed-rest and space-flight data are

qualitatively similar. However quantitative differences do exist" for
m ,

example, the space-flight metabolic responses are generally more rapid and

greater in magnitude than those of bed rest.

2.2 THE CALCIUM MODEL
t

The calcium metabolic model was developed by Jaros, Coleman, and Guyton (9)

and is implemented on a Digital Equipment Corporation VAX 11/780 series '!

computer. All of the elements of the model are contained in seven subsystem

models that mathematically describe four calcium compartments and three

hormonal regulators (10). The central compartment, which describes the

calcium concentration of the extracellular fluid, is regulated by passive _i

i

exchange rates between the renal, intestinal, and skeletal compartments. The

renal compartment eliminates calcium from the central compartment, the

intestinal compartment adds calcium to the central compartment, and the bone

compartment stores calcium in an internal reservoir and acts as a long and _

short-term buffer to the central compartment The three hormonal regulators

parathyroid hormone, calcitonin, and metabolites of Vitamin D, actively

stimulate or inhibit the passive calcium fluxes between compartments through

negative feedback control. A schematic of the seven subsystems and their

relationships is presented in Figure 2.

The three regulatory subsystems of the Jaros, Coleman, and Guyton (9) model

have been replaced with subsystem models developed by Brand (10,11,12). These

new subsystems have not changed the function of the original subsystems; i.e.,

3
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calculating hormonal plasma concentrations, but they have provided more detail

within each particular hormonal system. This feature is particularly useful

when examining the Vitamin D metabolic subsystem. For example, changes in the

production rate of 1,25-dihydroxyvitaminD (1,25-(0H)2 D) can be traced

through the Vitamin D metabolic path (Vitamin D to 25-hydroxyvitamin D to

1,25-dihydroxyvitaminD) and/or by its regulatory agents, plasma calcium and

phosphorus (or parathyroid hormone) concentrations.

As much as possible, the model has been developed with the idea of

representing,mathematically, distinct physiological activities.

Unfortunately, this has not always been possible. The skeletal subsystem of

the calcium model contains the terms resorption, accretion, efflux, and

influx. In the actual physiological system these terms identify specific

cellular or biochemical activities, but in the model they represent net

changes in the solid bone and bone fluid compartments that are assumed to be

related to specific cellular and biochemical activity rates. For example, the

term resorption represents a general degradation, or loss of calcium out of

the solid bone that is assumed to be caused primarily by cellular osteoclastic
}

activity. Accretion represents the buildup, or increase of calcium into the i

solid bone mineral by osteoblastic activity. Influx and efflux represent
i

general gains and losses, respectively, from the bone fluid, i

2.3 MODEL SIMULATIONS 1

!
The main function of the model is to provide a theoretical foundation for _ i
analyzing and developing hypotheses of human calcium metabolic responses to an

experimental stress. Although this can be done in a variety of ways, the most i

useful approach in this study has been, first, to establish model credibility

through validation testing, and second, to analyze the model responses through !
hypothesis testing, i I

In this report, the purpose of validation testing is to assess the degree of

correspondence between model output and actual experimental data by comparing

the qualitative and quantitative trends of common variables. The major

objective of this type of "curve fitting" analysis is to demonstrate the

ability of the model to reliably simulate overt responses of the calcium

6
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metabolic system to given experimental stresses and thereby establish a sense

of credibility in the model. Another objective is to test the premises with

which the simulations are initialized (see section 2.4). The simulation

studies cannot substantiate the initializing assumptions but they can provid_

theoretical support for their plausibili:y. The results of the validation

tests during the zero-gravity simulation_ are presented in section 3.0.

The purpose of hypothesis testing is to assess pathways that are involved in a

particular set of metabolic responses. Contrary to the validation studies,

the model output from these simulations rarely are "curve fit" to experimental

data; instead, the model outputs are qualitatively evaluated for plausibility.

The output of each variable typically is defined in terms of direction and

approximate magnitude of change from baseline, factors responsible for the

change, and reciprocal effects generated by the change. The results of these

tests are presented in section 4.0.

A significant asset of the modeling approach is that the usefulness of the

model does not rely upon the correctness of simulation results. Although good

correlation of simulation and experimental results is desirable, important

objectives are also met when agreement is poor (13). Inconsistent results

entice a researcher to critically examine both the model, which reflects the

researcher's simplified perception of the system, and the experimental

analyses. These inconsistencies generally le_d to refinements in the model, !.
suggestions of additional data analyses, and designations of new experiments.

2.4 SIMULATION INITIALIZATIONS

The calcium metabolic balances, calculated from the space-flight and bed-rest !

data, suggest that calcium is lost from the whole body during exposure to _

weightless environments (Fig. I). When the calcium output is greater than the

calcium input, the excess calcium being excreted must be obtained from an _

internal source. The largest internal pool of calcium in the human body is

the bone, as it contains about 98 percent of the total body calcium (6). The

soft tissues contain the remaining 2 percent of total body calcium which is

distributed between three major subcompartments: muscle, skin, and

extracellular fluid. In this analysis, calcium sources from the muscle and

7
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skin are assumed to be negligible during exposure to hypogravtc environments.

Consequently, the above scenario tnstrluates that calcium is removed from the

bone and excreted from the body.

For model simulation purposes, the initializing factors that drive the calcium

out of the bone must be assessed. To aid in this analysis, visualize the bone

compartment as a large calcium pool and the extraceIiular fluid compartment as

a small calcium pool (Fig. 3). Homeostasis of the extracellular fluid calcium

concentration is tightly maintained by intestinal calcium absorption and urine

calcium excretion rates, symbolized in Figure 3 by inflow and outflow faucets

to the external environment, and by an internal buffer reservoir, the large

pool. In the actual metabolic system, calcium can also be lost from the body

through sweat and intestinal secretion rates. In this analysis, however,

these rates are assumed to be constant.
I

In the normal, healthy adult, the skeletal system is fully developed and the

hom-ostatic rate of calcl_m flow between it and the extracellular fluid is

zero (Figure 3A). Homeostasis of the extracellular fluid is disturbed when

one or unoreof the input or output flow rates is altered. For example, if the _J"

urine calcium excretion rate increases, as it does in Figure I, the

extracellular fluid compartment loses caicium. To compensate, calcium flows

from the bone compartment to the extracellular fluid compartment (Figure 3B)

and restores the extracellular fluid calcium concentration. The skeletal I

I"fix" is only a temporary "fix" though until :he rate of input (intestinal

absorption) increases and homeostasis Is restored. If the intestine does not ,_

respond to the demand for increased calcium input, then the bone continues to _,

compensate for the calcium losses (Figure 3C) by drawing upon normally

inaccessible calcium reserves (such as the hydroxyapatite of solid bone), and ,_

the system becomes negatively balanced. _

In the analogy just presented, and dlagramatlcally shown in Figures 3A, B, and

C, the kidney initiates calcium loss from the extracellular fluid, the

intestinal calcium input remains steady, and the bone responds by

compensating for the loss. Unfortunately, the experimental bed-rest data do

not appear to support this scenario (4); the kidney does not appear to

initiate the hypogravlc calcium,netabollc changes. The urinary excretion
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rates of creatinine, a product of catabolism, do not appear to be affected by

the zero-gravity stress, and a diuresis and/or natriuresis which may

concurrently force higher rates of renal calcium excretion, have not been

detected. In addition, the urine calcium excretion rates probably are not

receiving hormonal stimulation because changes in plasma hormonal

concentrations, during bed rest or space flight, appear to occur late in the

experimentalperiod. Instead, the data suggest that the kidneys appear to

respond passively to excesses in extracellular fluid calcium concentration.

The kidney is compensating for higher than normal rates of plasma calcium

input.
C

The intestinal and hormonal (in particular 1,25-(0H)2 D) data further support

the idea that the calcium metabolic system is attempting to remove, rather

tnan restore, calcium from the extracellular fluid. In the model of Figure i_

3B, homeostasis is restored by increasing the rate of inflow, decreasing the

rate of outflow, or both. In the bed-rest data, the intestinal absorption i

rate decreases late (five to six weeks) in the experimental period.

Considering the constant dietary intake rates during the bed rest studies and ._
the reduced levels of plasma 1,25-(0H)2 D, the system appears to be shutting _

off, rather than turning on, its extraneous source of calcium input. _

Referring to Figure 3, the only other input source of calcium is the internal

buffer system. !

Bone is known to be highly sensitive to changes in its customary amount of

intermittent loading and deformation. Although unsupported by experimental

research, this premise is the basis of most clinical orthopaedic practice (14)

and is implicated, from an intuitive point of view, in the skeletal changes

observed during bed rest and space flight.

Bone is a unique tissue b_cause it appears to be a durable, firm, inanimate, :

ceramic mater_al. Historically, it has been characterized in terms of

strength, toughness, elasticity, and chemical integrity so that clinical :;i

guidelines of stress-strain relationships, fracture thresholds, and bending

traits could be developed. Yet, in the living vertebrate, the tissue is

metabolically actlve and adaptive. The structural design of each bone is

genetically predetermined, but the actual mass, texture, and shape is molded

10
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by mechanical, functional demands. The mechanisms and sites responsible for

sensing changes in mechenical function and translating them into structural

modifications are not clear, but proposals include cellular mediation,

biochemical mediation, and electrical signalling as well as changes in

skeletal blood flow and calcium solubility rates (14).

In the weightless environment, tremendous mechanical alterations can occur to

the supporting structures of organisms. The first and most obvious is the

immediate reduction in the amount of habitual inLermittent loading and

deformation of weight-bearing bones. This tremendous loss of function is

assumed to initiate a remodelling of tissue mass in weight-bearing areas,

generating an overall decrease of skeletal mineral content and an increase in

skeletal calcium efflux. Upon entry into an hypogravic environment, the

skeletal system is assumed to dump, in some undefined manner, calcium into the

extracellular fluid (4,5). The extracellular fluid will, in turn, force

calcium through the kidneys at a higher rate. The calcium metabolic system

then attempts to restore r_omeostasisto the extracellular fluid with a series

of compensatory and hormonal feedback responses. These series of responses

are examined in the calcium model. _

To initiate th simulation in the calcium model, skeletal efflux is stimulated _

by reducing the value of an abstract gravitational term. The calcium efflux

of the system and generates a series of
from the bone disturbs the homeostasis

metabolic responses that are compared to available experimental data. One T;_

liter of extracellular fluid volume is also removed to simulate the rapid, day

one loss of _xtracellular fluid observed during space flight.

:!
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3.0 RESULTS OF THE VALIDATIONS TESTS ;i

3.1 VALIDATION OF THE BED-REST SIMULATIONS i_

Many of the bed-rest simulation data presented in Figure 4 qualitatively and

quantitatively agree with the experimental bed-rest data of Figure 1. In both :_

the model and the actual physiological system, rapid renal calcium filtration _;

tends to compensate for the skeletal unloading of calcium into the plasma, '_J

resulting in the maintenance of fairly stable plasma calcium levels -_

(simulationdata: +4 percent variation: experimental data: +/- 2 percent _i'

variation) in spite of the input load. The intestinal absorption rate does

not change significantly for the first 5 weeks of bed rest but after 5 weeks,

it decreases below the ambulatory baseline value. Summating these results _!,

demonstrates that the body is continually eliminating whole body calcium

sto_es which leads rapidly into a negative calcium balance.

3.1.1 Urine Excretion

The maximum urine calcium excretion rates of the simulated and experimental _

data are equivalent, about 45 percent above the ambulatory norm. The

experimentaldata increase, over a three week period, to the maximal rate and

then decrease for the duration of the study to about 10 percent above the

ambulatory mean. Ti_esimulated excretion rate increases immediately, rising

to 41 percent after the zero-gravity initialization. It remains between this

value and the maximum level for the duration of the simulation. The

difference between the trends of Lhe two sets of data is due to an artificial

stimulation of the simulated urine calcium excretion rate which is initialized

with, and maintained throughout the zero-gravity stress.

This artificial stimulation in the urine calcium output provides an excellent

example of how poor agreement between simulation and experimental data

generate important analyses of the actual and simulated calcium metabolic

system. When the zero-gravity simulations were first executed on the model,

the plasma calcium concentration increased high enough to stimulate responses

which were exaggerated in many other system variables. The model's structure

12
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In the model, the relationship of the kidney to the calcium metabolic system

(during a hypogravic stress) was further defined by artificially manipulating

the urine excretion rate and analyzing the model output. The kidney was found

to be the first and most influential metabolic response for the maintenance of

short-term plasma calcium homeostasis. A suitable urine calcium excretion

rate for the bed-rest simulation was established (forced), and this forced

urine excretion rate, which is comparable to the actual excretion rate, has

become an integral part of the bed-rest initialization package. It will

remain so until the renal subsystem model is modified to simulate the handling

of calcium more realistically.

Ideal]y, an extension of the renal simulation analyses, presented above, is to

test the renal hypothesis in an experimental setting and confirm or redefine _

the simulation results. It must be remembered that a model is only a

simplified representationof the system under investigation; as such, the

sitnulationsmust continually be tested for validity and reliability with

experimental data. Unfortunately, the modeling work conducted by this group _

is not supported by concurrent experimental research. Consequently, the major _

contributions of the simulation analyses are to predict relationships, and

their relative significance, within the calcium metabolic systefn. The _

theoretical importance of the kidney to the calcium metabolic system during i__ ':ibed rest is an example of such a contribution.

3.1.2 Intestinal Absorption and Vitamin D

The simulated intestinal calcium absorption rate (Figure 4) decreases after _
four weeks of bed rest to a minimum rate that is 13 percent below the

ambulatory norm. This value is midway between the experimental intestinal

absorption rates calculated from the calcium isotope data (18 percent loss)

and the fecal data (I0 percent loss). In the model, the intestinal absorption

rate is regulated by the plasma level of 1,25-dihydroxyvitaminD (1,25-(0H)2

D). Th_s vitamin is 12 percent (slmulation data) and 23 percent (experimental

14



data) below baseline by the third week of the bed-rest period. In the model,

the 1,25-(0H)2 D production rate is inhibited by the 4 percent increase in the

plasma calcium level. The responsible hormonal regulator in the experimental

bed-rest data has not been identified.

3.1.3 Plasma Parathyroid Hormone

The plasma parathyroid hormone (PTH) results obtained during simulated and

experimental bed-rest studies are difficult to interpret. In the model, the 4

percent increase in the plasma calcium concentration suppresses the plasma PTH

concentration by 30 percent after 5 weeks of simulated bed rest (Figure 4).

After 5 weeks of experimental bed rest, the plasma PTH concentration increases

over 300 percent; however, the experimental data are subject to dispute. The

PTH data were collected in only one of the bed-rest studies conducted at the

U.S. Public Health Hospital in San Francisco. The PTH results are consistent

for the three subjects within that one study, but the reliability of the data

is questionable. A 300 percent increase in the plasma PTH concentration is

extremely high, particularly since most of the other system responses are

sma11.

Since the direction and magnitude of the plasma PTH response to bed rest is

undefined, the model was used to test the impact of a PTH increase, decrease,

or no change on the calcium metabolic system. The decrease is simulated in _J

Figure 4, but to simulate an increase or absence of change in plasma PTH, an _
i

additional PTH regulator that was capable of overriding calcium control was _
J_

incorForated into the PTH subsystem model. The bed-rest simulations with the

artificial manipulation of PTH secretion rates were executed on the model and _
the results of three simulations (bed rest plus a PTH increase, decrease, or _i

no change) were compared.

Selected variable responses to the PTH manipulations during the bed-rest

simulations are reported in Table I. The results suggest that in hypogravic '._

environments plasma PTH concentrations exert little influence on overt ,i.
*calcium metabolic responses. A plus or minus 30 percent change from normal in

the plasma PTH concentration only slightly affects the urine calcium excretion

rate and plasma calcium concentration. The effect on the intestinal ,_:_

15
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Table i: Results of Selected Variable Responses During Bed-Rest Simulations

With Changes in Plasma PTH Concentration (percent change from baseline).

Plasma Urine Plasma Intestinal Plasma
PTH excretion calcium absorption 1,25-(0H)2D

-30 45 4 -13 -12

0 47 5 -16 -17

+30 49 6 -20 -22

i
$

16
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absorption rate is more pronounced This is because of the sensitivity oF the
i'

rena] production rate of 1,25-(0H)2 D to plasma calcium concentrations.

i 3.2 VALIDATION OF THE SPACE-FLIGHT SIMULATIONS
Initializationof the space-flight simulation is similar to that of the

bed-rest simulation. One liter of extracellular fluid is removed from the

system and the value of the gravitational factor, which artificially

stimulates the skeleta| calcium efflux rate, is reduced by the same magnitude

in the bed-rest simulation. In the between the
as fact, only difference

bed-rest and space-flight initializations is the rate with which calcium is

artificially forced into the urine. The 45 percent increase in the urine

calcium excretion rate for the bed-rest simulatiorlis elevated to BO percent

in the space-flight simulation.

The initialization procedures, listed above, generate simulation results which

usua]ly agree in direction, but not in magnitude, with the experimental

space-flight results or proposed hypotheses (Figure 5, Table 2). For example,

the plasma calcium concentration increases to a maximum value of one percent

_ in the simulation and to seven percent in the experimental data. Based upon

i the space-flight fecal calcium excretion and dietary calcium ingestion rates,

:_ RambauL and ,Johnson(5) have hypothesized long-term decreases in the

intestinal absorption rate of calcium and the production of 1,25-(0H)2 D. The

model agrees with these hypotheses by predicting a long-term decrease of four

i percent in the intestinal absorption rate and five percent in the renal

I 1,25-(0H)2 D production rate. The only obvious discrepancy between simulation
and experimental results occurs in the plasma concentration of PTH which

decreases by seven percent in the simulation, but increases by 47 percent in

the space-flight data.

The changes in variable output recorded during the space-flight simulations

are smaller than the bed-rest experimental data and simulation output. This

is contrary to the results illustrated in Figure 1 where the calcium metabolic

changes measured during space flight are greater than those recorded during

17
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Figure 5.- Validation of the space flight simulation.
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Table Z: Comparison of Bed-Rest and Space-Flight Simulation and
Experimenta} Results (percent change from base|ine).

Urine Intestinal Plasma Plasma Plasma
Excretion Absorption Calcium PTH 1,25(OH)2D :,

Simulations

i_ed Rest 4b - 13 4 - 30 - 12 ,i

Space Flight 8U - 4 I - 7 - 5
i:

,4

Experiments

Bed Rest 45 - 18 _/-2 -317 - 23 '

Space Flight 80 -(H) l 47 -(H) "-_

j
-(H) Represents a decrease of undefined magnitude which has been hypothesized

from the experimenLal data (5). i ',

!
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bed rest. The cause of the small space-fllght simulation results can be _

traced to the initialization procedures and to the intrinsic structure of the

model. _1

Hypothetically,the reduction in the gravitational force to weight-bearing

bones is similar during bed rest and space flight. This assumption suffices

for the initialization of the model simulation, but probably is not true in

the actual physiological system. The identical rates of skeletal calcium

efflux during bed rest and space flight stimulate identical rates of calcium _ '

gain into the plasma. However, the diverse rates of renal calcium excretion

for the bed-rest and space-flight initializations result in variant rates of . 4

plasma calcium loss. Within the structure of calcium model, the higher rate _ !
of urine calcium excretion for the space-flight initialization compensates

more for the plasma calcium gain due to the skeletal efflux rate than does the /
urine excretion rate for the bed-rest initialization. Since the concentration

of calcium in the plasma is the main regulator in most of the subsystem models _ i

of the calcium model, the simulation results are proportional to the changes 4

in the plasma calcium concentrations.

Given these conditions, the model predicts that calcium metabolism is only i

slightly affected by space flight and is more dramatically affected by bed

rest. lhese predictions are clearly contrary to experimental results (Table

2). In the actual physiological system, the change in the plasma calcium

concentration is greater during space flight than during bed rest. This

suggests that the rate of skeletal calcium efflux is greater and is less

compensated by the urine calcium excretion rate during space flight than

during bed rest. From these analyses, three main questions emerge. First, is

the r_te of skeletal calcium efflux greater during space flight than during

bed rest? Second, what is the nature of the skeletal loss? Finally, is the

skeleton the major source of calcium being eliminated from the body or do soft

tissue calcium pools contribute?
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4.0 HYPOTHESIS TESTING

4.1 GRAVITY VECTORS DURING BED REST AND SPACE FLIGHT

The skeletal system is a large, significant component of the calcium netabolic

system and is thought to play an important role in the zero-g metabolic

changes. Assumptions of human bone degradation have been based on negative

calcium balances (which are indirect indicators of whole bone body mineral

loss), urine hydroxyproline excretion rates (which are indirect indicators of

collagen breakdown), and changes in bone mineral density (which, when measured

by photon absorptiometric techniques, are only detectable after the third

month in space, (5)). In both the bed-rest and space-flight studies, urine

hydroxyproline excretion rates are above the baseline averages throughout the

experimentalperiod, suggesting higher rates of osteoclastic resorption

(5,8). Alternative sources of hydroxyproline may be collagen degradation in _

ligaments and tendons (and even the skin as muscle atrophy develops), and the

diet. Rodent histological and tracer studies demonstrate decrements in the

bone accretion rates, but no change in the bone osteoclastic resorption rates ":

(15,16). Similar bone studies have not been conducted in man.

The quantitative differences between the data obtained from the space-flight _
and bed-rest studies are assumed to be related to distinct physiological

, a

alterations that occur during exposure to the two environments. The most

significant environmental factor that exerts an influence on the physiological

changes is the gravity vector and its relationship to body orientation. In

the space-flight studies experimental data collected in subjects in the

absence of a gravity vector are compared to control data, collected in

ambulatory subjects in one-gravity. The bed-rest studies always are conducted

in a one-gravity environment. In these studies, experimental data collected

in subjects in the supine position are compared to control data collected in

subjects in the ambulatory position. Consequently, bed-rest studies

investigate the influence of the gravitational force when the gravity vector

is parallel or perpendicular to the polar axis (lengthwise or y-axis) of the

body (Figure F). The purpose of changing the body orientation in relationship

to the gravity vector is to attempt to eliminate the effect of the gravity

vector on physiology and, thereby, simulate the space-flight environment. In
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actuality, this effort is only partially successful. The change in orientation

reduces the effect of the gravity, but does not eliminate it.

Gross descriptions of the differences in mechanical force applied to the

skeletal system, in each of the three body positions, are given below. These

differences are described in terms of externally-applied compression from

gravity, and internally-appliedtorsion, tension, compression, and shear from

muscle-bone interactions. The relationship of internally applied forces to

bone degradation and integrity are poorly understood. They may be involved in

skeletal changes as muscle groups gain and lose functional dominance in the

new environment and as anti-gravity muscles undergo disuse atrophy.

Hypothetically,their infldences can be diminished when the musculature is

maintained through appropriate exercise regimes. The primary mechanical force

considered in this report is externally applied compression from gravity.

In a one-gravity environment, the gravitational vector on an individual in the

vertica| orientation concentrates th_ ft,rce of body weight to the feet. The

vertebra, femur, humerus, tarsals, mer:-_rsals, and phalanges are structured

to bear the weight of the body and to absorb the energy generated by the shock

of impact when the body is in motion (17). When the individual is in the

horizontal position, the gravity vector is distributed along the _ntire length

of the body. The amount of weight supported at any given point of

body-surface co,ltactis proportional to the vertica| mass above that point.

Ibis redistribution of gravitational force transposes the normal,

weight-bearing and shock absorbing structures within the bone to otter -

surfaces and structures. This results in a concomitant redistribution of

hydroxyapatite,or bone mineral. In space, the skeletal system is completely

relieved of gravitational forces, and therefore, of body weight |oads and

in_oactforces. Consequently, the difference between the bed-rest and space-

flight calcium tnetabolicresponses may be due to a redistribution of hydroxy-

apatlte during bed rest that otherwise might be eliminated during space flight.

A1tholJghthese mechanlcal properties of bone have been implicated in the

calcium metabolic changes recorded during bed rest and space flight, limited

experimental data and mathematical representation within the model prohibit i
)
i
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further data analysis and hypothesis development. The only assumption which

may be made is that mechanical alterations to the bone from reduced

gravitationalloads may result in a loss of calcium _rom the bone and,

subsequently, from the body. The rate of skeleta" loss appears to be greater

during space flight than during bed rest, which could be assumed to be related

to differences in mechanical factors applied to the bone within the two

gravitationalenvironments.

i

4.2 REGULATORY PROPERTIES OF BONE: SIMULATION DATA

Hormonal regulatory properties of bone mineral content, as secondary skeletal

responses,also may be implicated in the calcium metabolic changes recorded

during bed rest and space flight. Secondary responses include regulatory

propertieswhich function to maintain plasma calcium homeostasis through -_

hormonal feedback control of osteoblastir, osteoclastic, and osteocytic _

cellular activity rates. It is mainly these properties that are grossly

represented in the skeletal subsystem of the calcium model Because of the .:

similaritybetween the bed-rest and space-flight calcium metabolic responses _-
8

and because of the more accurate representationof the bed-rest data with the

model simulation, only the bed-rest simulation data will be presented. The

hypotheses discussed in this report are assumed to be applicable to space

flight as well. ._

The results of changes in selected skeletal parameters are presented in Figure i

7. In summary, the amount of calcium in the bone mineral decreases after _ !Iabout 20 days of bed rest. Although the rate of calcium resorption decr;ases ....

slightly (by a maximum of 5 percent), and thereby reduces the rate of tJn_

mineral re,noval,the rate of accretion, by which new ccllagen for new mineral

formation is deposited, decreases by 20 percent• In addition, the rate of ,_!_

calcium efflux is inhibited by a maximum of 18 percent while the rate of _

influx is stimulated by six percent. This suggests that the bone fluid is _

buffering the amount of calcium being lost from the solid bone mineral and i_

being dumped into the plasma. These skeletal results contribute significantly I

to the negative calcium balance presented in Figure 4.
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Since the plasma concentratiom of PTH significantly influences the rate of

change in several of the skeletal parameters, simulation results of the

skeletal parameters durinu bed rest with 0 and 30 percent increases in plasma

PTH concentrations also were examined (see section 3.1 for backgroun_

information). The results of the three simulations are presented in Table 3

(see Table I).

Manipulation of the plasma PTH concentrations significantly influences changes

in the rate of bone resorption. Examination of the mathematical equations

within the model reveal that the resorption rate is regulated directly, and

solely, by the plasma concentration of PT_I. Consequently, as PTH

concentrationsincrease resorption rates increase and vice versa.

Unfortunately, significant changes, from negative to positive, in the bone

resorption rates only aggravate the negative calcium balances. Negative

resorption rates represent decreased rates of calcium loss while positive

resorption rates represent enhanced rates of calcium loss from the solid bone.

Changes in the rate of resorption regulate, in a direct one-to-one
c

relationship,changes in the rate of bone mineral accretion. Consequently,

when the rate of resorption decreases the rate of accretion decreases, j
i'Unexpected in the simulation, however, is the four-fold decrease in _he rate

of accretion and the disassociation of the accretion rate with the resorption

rate as it increases above baseline. These results are due to an additional

regulatory factor on the accretion rate, plasma concentrations of 1,25-(0H)2 !
D. The long-term decrements in the plasma concentrations of 1,25-(0H)2 D are _.

greater than the changes in the resorption rates and thereby exert greater

influence on, and generate long-term decrements in, the bone accretion rates.

The rate of calcium flow into the bone fluid (influx) is strictly a function

of passive diffusion from the plasma into the bone fluid. The concentration ,!

gradient between the two pools of calcium are calculated and the difference is _i

multiplied by a diffusion factor. Consequently, as the concentration of '_

calcium in the plasma increases with each simulation (see Table I) the rate of

calcium influx increases.
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Table 3: Results of Selected Skeletal Parameters During Bed-Rest Simulations

With Changes in Plasma PTH Concentrations (Percent Change from Baseline). _i

i

Bone Fluid Bone Fluid Solid Bone Solid Bone
Plasma Calcium Calcium Calcium Calcium Plasma '

/

PTH Efflux Influx Resorption Accretion 1,25-(0H)2 D

_q
?)

- 30 - 18 + 6 - 5 - 20 - 12
3

0 - 17 + 7 El - 1.7 - 17

+ 30 - 15 + 9 + 7 - 18 - 22 _I

i'

?
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Finally, the rate of calcium flowing out of the bone fluid is inhibited in the

three simulations of Table 3. Three hormones regulate the rate of calcium _

efflux from the bone fluid, PTH, 1,25-(0H)2 D, and calcitonin. In these

simulations, 1,25-(0H)2 D and PTH are the main regulators. When the plasma

concentrations of the two hormones are depressed below normal the rate of bone

fluid calcium efflux is inhibited. However, as the plasma PTH concentration

increases above baseline values, the inhibitory control is reduced.

The concentration of calcitonin is uneffected by the bed-rest stress. This is

due to the small variations in the simulated plasma calcium concentrations and

the manner in which calcitonin secretion rates are stimulated in the ,,,odel.

The plasma calcium concentration must increase to a value that is 15 percent

higher than the baseline concentration before the simulated calcitonin

secretion rate will be stimulated. In both the space-flight and bed-rest

simulation and experimental data, the plasma calcium concentration never rises

more than seven percent above the baseline value. Consequently, the influence

of calcitonin on the rgulation of bone fluid efflux rates is negligible.

:i

In all three simulations, the data suggest that the skeletal system attempts

to maintain bone integrity in the face of the slow, consistent,

gravity-induced,mineral loss (initialization factor, see section 2.4) from |,

the solid bone compartment. Bone mineral integrity is further impaired by a

dimir,ished ability to rebuild mineral mass despite the maintenance of calcium

concentrations in the surrounding bone fluid. These factors results in

whole-body negative calcium balances. Although the magnitude of the decrease

in bone accretion may be exaggerated in the simulation it has been supported

experimentally in studies conducted on rodents in the Cosmos space-flight !

program (15).
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5.0 CONCLUSION

A diagram of the hypotheses developed from the validation tests of the zero-

gravity simulations are presented in Figure 8. Briefly, a skeletal

degradation occurs when an individual is in an hypogravic environment. This

results in an increased rate of ca|cium input to the plasma. This excess

calcium input is rapidly detected by the kidney and eliminated in the urine.

However, the change in the pl_ma calcium level reduces the production rate of

1,25-(0H)2 D and eventually the rate of intestinal calcium absorption.

Changes in the plasma levels of PTH and skeletal activity rates are undefined.

All of these metabolic events result in a whole body loss of calcium, which is _

reflected as a negative calcium balance. The metabolic responses within the

calcium system are slow, requiring weeks to maximally adapt, and the resulting

steady state, particularly for the skeletal system, is as yet undefined (5).

The results of the bed-rest and space-flight simulations using the Jaros,

Coleman, and Guyton calcium model (9) demonstrate that the model is capable of [_

simulating calcium metabolic responses to hypogravic environlnents. Although

the bed-rest simulation is better than that of space-flight, both simulations

are expected to improve as the renal subsystem is modified to respond more

appropriately to plasma calcium input stresses and as the skeletal subsystem

is expanded and improved. Fortunately, Jaros, Guyton, and Coleman have

published modifications and expansions of their skeletal subsystem so that it

is inorerepresentativeof the actual physiology and biochemistry of the bone

(18). These modifications are being incorporated into the existing model to

create an expanded version of the original model. The space flight

simulations are al_o expected to improve as dietary i_take and skeletal efflux

rate changes are included in the initializations.
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